ГОСУДАРСТВЕННОЕ САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКОЕ НОРМИРОВАНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Утверждаю Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации Г.Г.ОНИЩЕНКО 18 декабря 2008 г.

Дата введения: с момента утверждения

2.3.1. РАЦИОНАЛЬНОЕ ПИТАНИЕ

НОРМЫ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ ДЛЯ РАЗЛИЧНЫХ ГРУПП НАСЕЛЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ MP 2.3.1.2432-08

- 1. Разработаны ГУ НИИ питания РАМН (В.А. Тутельян, академик РАМН, руководитель работ; А.К. Батурин, д.м.н., профессор; М.Г. Гаппаров, член-корреспондент РАМН; Б.С. Каганов, членкорреспондент РАМН; И.Я. Конь, д.м.н., профессор; В.К. Мазо, д.б.н., профессор, ответственные исполнители: В.С. Баева, к.б.н.; В.В. Бессонов, к.х.н.; А.В. Васильев, д.б.н., профессор; Л.Ю. Волкова, к.м.н.; О.А. Вржесинская, к.б.н.; М.В. Гмошинская, д.м.н.; В.М. Жминченко, к.м.н.; И.С. Зилова, к.м.н.; Э.Э. Кешабянц, к.м.н.; В.М. Коденцова, д.б.н., профессор; Л.В, Кравченко, к.м.н.; С.Н. Кулакова, к.м.н.; Н.В. Лашнева, к.м.н.; А.В. Погожева, д.м.н., профессор; А.М. Сафронова, к.б.п.; А.И. Соколов, к.м.н.; В.Б. Спиричев, д.б.н., профессор; С.А. Хотимченко, д.м.н., профессор; Н.М. Шилина, к.б.н); Научным центром здоровья РАМН (А.А. Баранов, академик РАМН, Т.Э. Боровик, д.м.н., профессор); Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека (Г.Г. Онищенко, академик РАМН); Московской медицинской академией им. И.М. Сеченова (Б.П. Суханов, д.м.н., профессор); Государственным научным центром РФ - "Институт медико-биологических проблем РАН" (А.И. Григорьев, академик и РАМН); Российской медицинской академией последипломного образования Минздравсоцразвития России (Н.А. Коровина, д.м.н., профессор, Т.Н. Сорвачева, д.м.н., профессор).
- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 18 декабря 2008 г.
 - 3. Введены в действие с 18 декабря 2008 г.

1. Введение

Физиологическая потребность в энергии и пищевых веществах - это необходимая совокупность алиментарных факторов для поддержания динамического равновесия между человеком как сформировавшимся в процессе эволюции биологическим видом, и окружающей средой, направленная на обеспечение жизнедеятельности, сохранения и воспроизводства вида и поддержания адаптационного потенциала.

"Нормы физиологических потребностей в энергии и пищевых веществах" - усредненная величина необходимого поступления пищевых и биологически активных веществ, обеспечивающая оптимальную реализацию физиолого-биохимических процессов, закрепленных в генотипе человека.

"Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации" (далее - Нормы) являются государственным нормативным документом, определяющим величины физиологически обоснованных современной наукой о питании норм потребления незаменимых (эссенциальных) пищевых веществ и источников энергии, адекватные уровни потребления микронутриентов и биологически активных веществ с установленным физиологическим действием.

Данные Нормы являются научной базой при планировании объемов производства основного продовольственного сырья и пищевых продуктов в Российской Федерации; при разработке перспективных среднедушевых размеров (норм) потребления основных пищевых продуктов с учетом изменения социально-экономической ситуации и демографического состава населения Российской Федерации для обоснования оптимального развития отечественного агропромышленного комплекса и обеспечения продовольственной безопасности страны; для планирования питания в организованных коллективах и лечебно-профилактических учреждениях; используются при разработке рекомендаций по питанию для различных групп населения и мер социальной защиты; применяются для обоснования составов специализированных и обогащенных пищевых продуктов; служат критерием оценки фактического питания на индивидуальном и популяционном уровнях; используются при разработке программ подготовки специалистов и обучении населения принципам здорового питания и др.

Нормы являются величинами, отражающими оптимальные потребности отдельных групп населения в пищевых веществах и энергии.

Нормы представляют величины потребности в энергии для лиц в каждой выделяемой (в зависимости от пола, возраста, профессии, условий быта и т.п.) группе, а также рекомендуемые величины потребления пищевых веществ, которые должны обеспечивать потребность соответствующей категории населения.

Нормы базируются на основных положениях Концепции оптимального питания:

- энергетическая ценность рациона человека должна соответствовать энерготратам организма;
- величины потребления основных пищевых веществ белков, жиров и углеводов должны находиться в пределах физиологически необходимых соотношений между ними. В рационе предусматриваются физиологически необходимые количества животных белков источников незаменимых аминокислот, физиологические пропорции ненасыщенных и полиненасыщенных жирных кислот, оптимальное количество витаминов;
- содержание макроэлементов и эссенциальных микроэлементов должно соответствовать физиологическим потребностям человека;
- содержание минорных и биологически активных веществ в пище должно соответствовать их адекватным уровням потребления.

Настоящие Нормы представляют собой дальнейшее развитие действовавших в Российской Федерации Норм СССР от 1991 г. Сохраняя преемственность, представленные новые Нормы учитывают значительные достижения, накопленные за последние годы благодаря новейшим фундаментальным и прикладным исследованиям в области науки о питании и таких новых областях знаний как нутригеномика, нутригенетика, нутриметаболомика и протеомика.

2. Термины и определения

Белки - высокомолекулярные азотсодержащие биополимеры, состоящие из L-аминокислот. Выполняют пластическую, энергетическую, каталитическую, гормональную, регуляторную, защитную, транспортную, энергетическую и другие функции.

Величина основного обмена (ВОО) - минимальное количество энергии, необходимое для осуществления жизненно важных процессов, то есть затраты энергии на выполнение всех физиологических, биохимических процессов, на функционирование органов и систем организма в состоянии температурного комфорта (20 °C), полного физического и психического покоя натощак.

Витаминоподобные вещества - вещества животного и растительного происхождения с доказанной ролью в обмене веществ и энергии, сходные по своему физиологическому действию с витаминами.

Витамины - группа эссенциальных микронутриентов, участвующих в регуляции и ферментативном обеспечении большинства метаболических процессов.

Жиры (липиды) - сложные эфиры глицерина и высших жирных карбоновых кислот, являются важнейшими источниками энергии. До 95% всех липидов - простые нейтральные липиды (глицериды).

Макронутриенты - пищевые вещества (белки, жиры и углеводы), необходимые человеку в количествах, измеряемых граммами, обеспечивают пластические, энергетические и иные потребности организма.

Микронутриенты - пищевые вещества (витамины, минеральные вещества и микроэлементы), которые содержатся в пище в очень малых количествах - миллиграммах или микрограммах. Они не являются источниками энергии, но участвуют в усвоении пищи, регуляции функций, осуществлении процессов роста, адаптации и развития организма.

Минорные и биологически активные вещества пищи с установленным физиологическим действием - природные вещества пищи установленной химической структуры, присутствуют в ней в миллиграммах и микрограммах, играют важную и доказанную роль в адаптационных реакциях организма, поддержании здоровья, но не являются эссенциальными пищевыми веществами.

Незаменимые (эссенциальные) пищевые вещества - не образуются в организме человека и обязательно поступают с пищей для обеспечения его жизнедеятельности. Их дефицит в питании приводит к развитию патологических состояний.

Нормы физиологических потребностей в энергии и пищевых веществах - усредненная величина необходимого поступления пищевых и биологически активных веществ, обеспечивающая оптимальную реализацию физиолого-биохимических процессов, закрепленных в генотипе человека.

Пищевые волокна - высокомолекулярные углеводы (целлюлоза, пектины и другое, в т.ч. некоторые резистентные к амилазе виды крахмалов) главным образом растительной природы, устойчивы к перевариванию и усвоению в желудочно-кишечном тракте.

Рекомендуемый уровень адекватного потребления - уровень суточного потребления

пищевых и биологически активных веществ, установленный на основании расчетных или экспериментально определенных величин, или оценок потребления пищевых и биологически активных веществ группой/группами практически здоровых людей.

Углеводы - полиатомные альдегидо- и кетоспирты, простые (моносахариды и дисахариды), сложные (олигосахариды, полисахариды), являются основными источниками энергии для человека. Некоторые углеводы, в частности аминосахара, входят в состав гликопротеидов.

Физиологическая потребность в энергии и пищевых веществах - это необходимая совокупность алиментарных факторов для поддержания динамического равновесия между человеком как сформировавшимся в процессе эволюции биологическим видом и окружающей средой, направленная на обеспечение жизнедеятельности, сохранения и воспроизводства вида и поддержания адаптационного потенциала.

Фосфолипиды - эфиры спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты, содержат азотистые основания (холин, этаноламин, остатки аминокислот, углеводные фрагменты), составляют основной класс мембранных липидов.

Энергетический баланс - равновесное состояние между поступающей с пищей энергией и ее затратами на все виды физической активности, на поддержание основного обмена, роста, развития и дополнительными затратами у женщин при беременности и грудном вскармливании.

Энерготраты суточные - сумма суточных энерготрат организма, состоящая из энерготрат основного обмена, затрат энергии на физическую активность, специфическое динамическое действие пищи (пищевой термогенез), холодовой термогенез, рост и формирование тканей у детей и дополнительных затрат энергии у беременных и кормящих грудью женщин.

3. Социально-демографические группы населения Российской Федерации

3.1. Половозрастные группы населения

Выделены следующие половозрастные группы: мужчины и женщины 18 - 29 лет, 30 - 39 лет, 40 - 59 лет, а также лица пожилого возраста: мужчины и женщины старше 60 лет.

Возрастная периодизация детского населения, принятая в Российской Федерации, разработана с учетом двух факторов: биологического (онтогенетического) и социального критерия, учитывающего особенности обучения и воспитания в нашей стране. При этом социальное деление на возрастные группы в основном не противоречит биологическому. Соответственно выделены:

- от рождения до 12 мес.
- от 1 года до 3 лет
- от 3 до 7 лет
- от 7 до 11 лет
- от 11 до 14 лет
- от 14 до 18 лет

3.2. Группы населения, дифференцированные по уровню физической активности

Потребность в энергии и пищевых веществах зависит от физической активности, характеризуемой коэффициентом физической активности (КФА), равным отношению энерготрат на выполнение конкретной работы к ВОО.

Все взрослое население в зависимости от величины энерготрат делится на 5 групп для мужчин и 4 группы для женщин, учитывающих производственную физическую активность и иные энерготраты.

І группа (очень низкая физическая активность; мужчины и женщины) - работники преимущественно умственного труда, коэффициент физической активности - 1,4 (государственные служащие административных органов и учреждений, научные работники, преподаватели вузов, колледжей, учителя средних школ, студенты, специалисты-медики, психологи, диспетчеры, операторы, в т.ч. техники по обслуживанию ЭВМ и компьютерного обеспечения, программисты, работники финансово-экономической, юридической и административно-хозяйственной служб, работники конструкторских бюро и отделов, рекламно-информационных служб, архитекторы и инженеры по промышленному и гражданскому строительству, налоговые служащие, работники музеев, архивов, библиотекари, специалисты службы страхования, дилеры, брокеры, агенты по продаже и закупкам, служащие по социальному и пенсионному обеспечению, патентоведы, дизайнеры, работники бюро путешествий, справочных служб и других родственных видов деятельности);

II группа (низкая физическая активность; мужчины и женщины) - работники, занятые легким трудом, коэффициент физической активности - 1,6 (водители городского транспорта, рабочие пищевой, текстильной, швейной, радиоэлектронной промышленности, операторы конвейеров, весовщицы, упаковщицы, машинисты железнодорожного транспорта, участковые врачи, хирурги, медсестры, продавцы, работники предприятий общественного питания, парикмахеры, работники жилищно-эксплуатационной службы, реставраторы художественных изделий, гиды, фотографы, техники и операторы радио и телевещания, таможенные инспектора, работники милиции и патрульной службы и других родственных видов деятельности);

III группа (средняя физическая активность; мужчины и женщины) - работники средней тяжести труда, коэффициент физической активности - 1,9 (слесари, наладчики, станочники, буровики, водители электрокаров, экскаваторов, бульдозеров и другой тяжелой техники, работники тепличных хозяйств, растениеводы, садовники, работники рыбного хозяйства и других родственных видов деятельности);

IV группа (высокая физическая активность; мужчины и женщины) - работники тяжелого физического труда, коэффициент физической активности - 2,2 (строительные рабочие, грузчики, рабочие по обслуживанию железнодорожных путей и ремонту автомобильных дорог, работники лесного, охотничьего и сельского хозяйства, деревообработчики, физкультурники, металлурги доменщики-литейщики и другие родственные виды деятельности);

V группа (очень высокая физическая активность; мужчины) - работники особо тяжелого физического труда, коэффициент физической активности - 2,5 (спортсмены высокой квалификации в тренировочный период, механизаторы и работники сельского хозяйства в посевной и уборочный периоды, шахтеры и проходчики, горнорабочие, вальщики леса, бетонщики, каменщики, грузчики немеханизированного труда, оленеводы и другие родственные виды деятельности).

4.1. Энергия

Суточные энерготраты определяются энерготратами на конкретные виды деятельности и ВОО.

ВОО зависит от ряда факторов, в первую очередь от возраста, массы тела и пола.

У женщин: ВОО на 15% ниже, чем у мужчин (табл. 4.1).

При беременности и грудном вскармливании потребности в энергии увеличиваются в среднем на 15 и 25% соответственно.

У детей: в период новорожденности 15% потребляемой с пищей энергии тратится на рост. С возрастом отношение ВОО: масса тела постепенно снижается до наступления полового созревания. Максимальной потребности в энергии соответствует быстрый рост в подростковом возрасте (пубертатный период, табл. 4.2).

Расход энергии на адаптацию к холодному климату в районах Крайнего Севера увеличивается в среднем на 15%.

Суточные энерготраты на конкретный вид деятельности - это произведение ВОО на соответствующий КФА.

Физиологические потребности в энергии для взрослых - от 2 100 до 4 200 ккал/сут. для мужчин и от 1 800 до 3 050 ккал/сут. для женщин.

Физиологические потребности в энергии для детей - 110 - 115 ккал/кг массы тела для детей до 1 года и от 1 200 до 2 900 ккал/сут. для детей старше 1 года.

Таблица 4.1 Средние величины основного обмена взрослого населения России (ккал/сут.)

	Мужчины	(основної	й обмен)		Женщины (основной обмен)						
Масса тела, кг	18 - 29 лет	30 - 39 лет	40 - 59 лет	Старше 60 лет	Масса 18 - 29 тела, лет кг		30 - 39 лет	40 - 59 лет	Старше 60 лет		
50	1 450	1 370	1 280	1 180	40	1 080	1 050	1 020	960		
55	1 520	1 430	1 350	1 240	45	1 150	1 120	1 080	1 030		
60	1 590	1 500	1 410	1 300	50	1 230	1 190	1 160	1 100		
65	1 670	1 570	1 480	1 360	55	1 300	1 260	1 220	1 160		
70	1 750	1 650	1 550	1 430	60	1 380	1 340	1 300	1 230		
75	1 830	1 720	1 620	1 500	65	1 450	1 410	1 370	1 290		
80	1 920	1 180	1 700	1 570	70	1 530	1 490	1 440	1 360		
85	2 010	1 900	1 780	1 640	75	1 600	1 550	1 510	1 430		
90	2 110	1 990	1 870	1 720	80	1 680	1 630	1 580	1 500		

Средние величины основного обмена детского населения

Возраст	Основной обмен (ккал/кг массы тела)	Основной обмен (ккал/сут.)
1 mec.	60	250
до 1 года	55	550
от 1 года до 3 лет	52	660
от 3 до 7 лет	48	900
от 7 до 11 лет	25	650
от 11 до 18 лет	24	> 690

4.2. Незаменимые (эссенциальные) пищевые вещества и источники энергии

4.2.1. Макронутриенты

4.2.1.1. Белок

Потребность в белке - эволюционно сложившаяся доминанта в питании человека, обусловленная необходимостью обеспечивать оптимальный физиологический уровень поступления незаменимых аминокислот. При положительном азотистом балансе в периоды роста и развития организма, а также при интенсивных репаративных процессах потребность в белке на единицу массы тела выше, чем у взрослого здорового человека. Усвояемость белка - показатель, характеризующий долю абсорбированного в организме азота от общего количества, потребленного с пищей. Биологическая ценность - показатель качества белка, характеризующий степень задержки азота и эффективность его утилизации для растущего организма или для поддержания азотистого равновесия у взрослых. Качество белка определяется наличием в нем полного набора незаменимых аминокислот в определенном соотношении как между собой, так и с заменимыми аминокислотами. При окислении в организме 1 г белка дает 4 ккал.

Уточнение потребности в белке для детей старше 1 года сделано на основе результатов новых исследований по фактическому потреблению белка большинством детей обследованной популяции.

Физиологическая потребность в белке для взрослого населения - от 65 до 117 г/сут. для мужчин, и от 58 до 87 г/сут. для женщин.

Физиологические потребности в белке детей до 1 года - 2,2 - 2,9 г/кг массы тела, детей старше 1 года от 36 до 87 г/сут.

4.2.1.1.1. Белок животного происхождения. Источниками полноценного белка, содержащего полный набор незаменимых аминокислот в количестве, достаточном для биосинтеза белка в организме человека, являются продукты животного происхождения (молоко, молочные продукты, яйца, мясо и мясопродукты, рыба, морепродукты). Белки животного происхождения усваиваются организмом на 93 - 96%.

Для взрослых рекомендуемая в суточном рационе доля белков животного происхождения от общего их количества - 50%.

Для детей рекомендуемая в суточном рационе доля белков животного происхождения - 60%.

4.2.1.1.2. Белок растительного происхождения. В белках растительного происхождения (злаковые, овощи, фрукты) имеется дефицит незаменимых аминокислот. В составе бобовых содержатся ингибиторы протеиназ, что снижает усвоение белка из них. Что касается изолятов и концентратов белков из бобовых, то их аминокислотный состав и усвоение близки к таковым у белка животного происхождения. Белок из продуктов растительного происхождения усваивается организмом на 62 - 80%. Белок из высших грибов усваивается на уровне 20 - 40%.

4.2.1.2. Жиры

Жиры (липиды), поступающие с пищей, являются концентрированным источником энергии (1 г жира при окислении в организме дает 9 ккал). Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса -

насыщенные и ненасыщенные.

Физиологическая потребность в жирах - от 70 до 154 г/сут. для мужчин и от 60 до 102 г/сут. для женщин.

Физиологическая потребность в жирах для детей до года 5,5 - 6,5 г/кг массы тела, для детей старше года - от 40 до 97 г/сут.

4.2.1.2.1. Насыщенные жирные кислоты. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота. Жирные кислоты со средней длиной цепи (С8 - С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются β -окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. К таким животным жирам относятся бараний, говяжий, свиной и ряд других. Высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, сердечно-сосудистых и других заболеваний.

Потребление насыщенных жирных кислот для взрослых и детей должно составлять не более 10% от калорийности суточного рациона.

4.2.1.2.2. Мононенасыщенные жирные кислоты. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов.

Физиологическая потребность в мононенасыщенных жирных кислотах для взрослых должна составлять 10% от калорийности суточного рациона.

4.2.1.2.3. Полиненасыщенные жирные кислоты. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными (ПНЖК). Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов - эйкозаноидов.

Физиологическая потребность в ПНЖК - для взрослых 6 - 10% от калорийности суточного рациона.

Физиологическая потребность в ПНЖК - для детей 5 - 10% от калорийности суточного рациона.

Омега-6 (
$$^{\odot}$$
-6) и Омега-3 ($^{\odot}$ -3) ПНЖК

Двумя основными группами ПНЖК являются кислоты семейств $^{\odot}$ -6 и $^{\odot}$ -3. Жирные кислоты $^{\odot}$ -6 содержатся практически во всех растительных маслах и орехах, $^{\odot}$ -3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником $^{\odot}$ -3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК $^{\odot}$ -6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства - арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека.

Физиологическая потребность для взрослых составляет 5 - 8% от калорийности суточного рациона для $^{\Omega}$ -6 и 1 - 2% - для $^{\Omega}$ -3. Оптимальное соотношение в суточном рационе $^{\Omega}$ -6 к $^{\Omega}$ -3

жирных кислот должно составлять 5 - 10:1.

Физиологическая потребность в $^{\odot}$ -6 и $^{\odot}$ -3 жирных кислотах - 4 - 9% и 0,8 - 1,0% от калорийности суточного рациона для детей от 1 года до 14 лет, 5 - 8% и 1 - 2%, для детей от 14 - 18 лет соответственно.

- 4.2.1.2.4. Стерины. В пищевых продуктах животного происхождения основным представителем стеринов является холестерин. Количество холестерина в суточном рационе взрослых и детей не должно превышать 300 мг.
- 4.2.1.2.5. Фосфолипиды. Фосфолипиды участвуют в регуляции обмена холестерина и способствуют его выведению. В пищевых продуктах растительного происхождения в основном встречаются лецитин, в состав которого входит витаминоподобное вещество холин, а также кефалин. Оптимальное содержание фосфолипидов в рационе взрослого человека 5 7 г/сут.

4.2.1.3. Углеводы

Углеводы пищи представлены преимущественно полисахаридами (крахмал) и, в меньшей степени, моно-, ди- и олигосахаридами. При окислении в организме 1 г углеводов дает 4 ккал.

Физиологическая потребность в усвояемых углеводах для взрослого человека составляет 50 - 60% от энергетической суточной потребности (от 257 до 586 г/сут.).

Физиологическая потребность в углеводах - для детей до года 13 г/кг массы тела, для детей старше года - от 170 до 420 г/сут.

- 4.2.1.3.1. Моно- и олигосахариды. К моносахаридам относятся глюкоза, фруктоза и галактоза. Олигосахариды углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов. Основными представителями олигосахаридов в питании человека являются сахароза и лактоза. Потребление добавленного сахара не должно превышать 10% от калорийности суточного рациона.
- 4.2.1.3.2. Полисахариды. Полисахариды (высокомолекулярные соединения, образуются из большого числа мономеров глюкозы и других моносахаров) подразделяются на крахмальные полисахариды (крахмал и гликоген) и неусвояемые полисахариды пищевые волокна (клетчатка, гемицеллюлоза, пектины).
- 4.2.1.3.3. Пищевые волокна. В группу пищевых волокон входят полисахариды, в основном растительные, перевариваются в толстом кишечнике в незначительной степени и существенно влияют на процессы переваривания, усвоения, микробиоциноз и эвакуацию пищи.

Физиологическая потребность в пищевых волокнах для взрослого человека составляет 20 г/сут., для детей старше 3 лет - 10 - 20 г/сут.

4.2.2. Микронутриенты

4.2.2.1. Витамины

4.2.2.1.1. Водорастворимые витамины.

Витамин С. Витамин С (формы и метаболиты аскорбиновой кислоты) участвует в окислительно-восстановительных реакциях, функционировании иммунной системы, способствует усвоению железа. Дефицит приводит к рыхлости и кровоточивости десен, носовым кровотечениям вследствие повышенной проницаемости и ломкости кровеносных капилляров. Среднее потребление варьирует в разных странах 70 - 170 мг/сут., в России - 55 - 70 мг/сут.

Установленный уровень физиологической потребности в разных странах - 45 - 110 мг/сут. Верхний допустимый уровень потребления - 2 000 мг/сут.

Уточненная физиологическая потребность для взрослых - 90 мг/сут.

Физиологическая потребность для детей - от 30 до 90 мг/сут.

Витамин B_1 (тиамин). Тиамин в форме образующегося из него тиаминдифосфата входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизм разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем. Среднее потребление варьирует в разных странах 1,1-2,3 мг/сут., в США - до 6,7 мг/сут., в России - 1,3-1,5 мг/сут. Установленный уровень потребности в разных странах - 0,9-2,0 мг/сут. Верхний допустимый уровень потребления не установлен.

Уточненная физиологическая потребность для взрослых - 1,5 мг/сут.

Физиологическая потребность для детей - от 0,3 до 1,5 мг/сут.

Витамин B_2 (рибофлавин). Рибофлавин в форме коферментов участвует в окислительновосстановительных реакциях, способствует повышению восприимчивости цвета зрительным анализатором и темновой адаптации. Недостаточное потребление витамина B_2 сопровождается нарушением состояния кожных покровов, слизистых оболочек, нарушением светового и сумеречного зрения. Среднее потребление в разных странах 1,5-7,0 мг/сут., в России -1,0-1,3 мг/сут. Установленный уровень потребности в разных странах -1,1-2,8 мг/сут. Верхний допустимый уровень потребления не установлен. При потреблении витамина B_2 в размере 1,8 мг/сут. и более у подавляющего большинства обследованных лиц концентрация рибофлавина в сыворотке крови находится в пределах физиологической нормы.

Уточненная физиологическая потребность для взрослых - 1,8 мг/сут.

Физиологическая потребность для детей - от 0,4 до 1,8 мг/сут.

Витамин В₆ (пиридоксин). Пиридоксин в форме своих коферментов участвует в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, участвует в поддержании иммунного ответа, процессах торможения и возбуждения в центральной нервной системе, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В₆ сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии. Среднее потребление в разных странах 1,6 - 3,6 мг/сут., в Российской Федерации - 2,1 - 2,4 мг/сут. Недостаточная обеспеченность этим витамином обнаруживается у 50 - 70% населения Российской Федерации. Установленный уровень потребности в разных странах - 1,1 - 2,6 мг/сут. Верхний допустимый уровень потребления - 25,0 мг/сут.

Физиологическая потребность для взрослых - 2,0 мг/сут.

Физиологическая потребность для детей - от 0,4 до 2,0 мг/сут.

Ниацин. Ниацин в качестве кофермента участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно-кишечного тракта и нервной системы. Среднее потребление в разных странах 12 - 40 мг/сут., в Российской Федерации - 13 - 15 мг/сут. Ниацин может синтезироваться из триптофана (из 60 мг триптофана образуется 1 мг ниацина). Установленный уровень потребности в разных странах - 11 - 25 мг/сут. Верхний допустимый уровень потребления ниацина - 60 мг/сут.

Физиологическая потребность для взрослых - 20 мг/сут.

Физиологическая потребность для детей - от 5 до 20 мг/сут.

Витамин B_{12} . Витамин B_{12} играет важную роль в метаболизме и превращениях аминокислот. Фолат и витамин B_{12} являются взаимосвязанными витаминами, участвуют в кроветворении. Недостаток витамина B_{12} приводит к развитию частичной или вторичной недостаточности фолатов, а также анемии, лейкопении, тромбоцитопении. Среднее потребление в разных странах 4 - 17 мкг/сут., в Российской Федерации - около 3 мкг/сут. Установленный уровень потребности в разных странах - 1,4 - 3,0 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 3 мкг/сут.

Физиологическая потребность для детей - от 0,3 до 3,0 мкг/сут.

Фолаты. Фолаты в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний. Среднее потребление в разных странах 210 - 400 мкг/сут. Установленный уровень потребности в разных странах - 150 - 400 мкг/сут. Верхний допустимый уровень потребления - 1 000 мкг/сут.

Уточненная физиологическая потребность для взрослых - 400 мкг/сут.

Физиологическая потребность для детей - от 50 до 400 мкг/сут.

Пантотеновая кислота. Пантотеновая кислота участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых. Среднее потребление в разных странах 4,3 - 6,3 мг/сут. Установленный уровень потребности в разных странах - 4 - 12 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 5 мг/сут. (вводится впервые).

Физиологическая потребность для детей - от 1,0 до 5,0 мг/сут. (вводится впервые).

Биотин. Биотин участвует в синтезе жиров, гликогена, метаболизме аминокислот. Недостаточное потребление этого витамина может вести к нарушению нормального состояния кожных покровов. Среднее потребление в разных странах 20 - 53 мкг/сут. Установленный уровень потребности в разных странах - 15 - 100 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 50 мкг/сут. (вводится впервые).

Физиологическая потребность для детей - от 10 до 50 мкг/сут. (вводится впервые).

4.2.2.1.2. Жирорастворимые витамины.

Витамин А. Витамин А играет важную роль в процессах роста и репродукции, дифференцировки эпителиальной и костной ткани, поддержания иммунитета и зрения. Дефицит витамина А ведет к нарушению темновой адаптации ("куриная слепота" или гемералопия), ороговению кожных покровов, снижает устойчивость к инфекциям. Среднее потребление в

разных странах 530 - 2 000 мкг рет. экв./сут., в Российской Федерации - 500 - 620 мкг рет. экв./сут. Установленный уровень физиологической потребности в разных странах - 600 - 1 500 мкг рет. экв./сут. Верхний допустимый уровень потребления - 3 000 мкг рет. экв./сут. При потреблении витамина А в размере более 900 мкг рет. экв./сут. у подавляющего большинства обследованных концентрация ретинола находится в пределах физиологической нормы.

Уточненная физиологическая потребность для взрослых - 900 мкг рет. экв./сут. Физиологическая потребность для детей - от 400 до 1 000 мкг рет. экв./сут.

Бета-каротин. Бета-каротин является провитамином А и обладает антиоксидантными свойствами; 6 мкг бета-каротина эквивалентны 1 мкг витамина А. Среднее потребление в разных странах 1,8 - 5,0 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 5 мг/сут. (вводится впервые).

Витамин Е. Витамин Е представлен группой токоферолов и токотриенолов, которые обладают антиоксидантными свойствами. Является универсальным стабилизатором клеточных мембран, необходим для функционирования половых желез, сердечной мышцы. При дефиците витамина Е наблюдаются гемолиз эритроцитов, неврологические нарушения. Среднее потребление в разных странах 6,7 - 14,6 мг ток. экв./сут., в Российской Федерации - 17,8 - 24,6 мг ток. экв./сут. Установленный уровень физиологической потребности в разных странах - 7 - 25 мг ток. экв./сут. Верхний допустимый уровень потребления - 300 мг ток. экв./сут.

Уточненная физиологическая потребность для взрослых - 15 мг ток. экв./сут.

Физиологическая потребность для детей - от 3 до 15 мг ток. экв./сут.

Витамин D. Основные функции витамина D связаны с поддержанием гомеостаза кальция и фосфора, осуществлением процессов минерализации костной ткани. Недостаток витамина D приводит к нарушению обмена кальция и фосфора в костях, усилению деминерализации костной ткани, что приводит к увеличению риска развития остеопороза. Среднее потребление в разных странах 2,5 - 11,2 мкг/сут. Установленный уровень потребности в разных странах - 0 - 11 мкг/сут. Верхний допустимый уровень потребления - 50 мкг/сут.

Уточненная физиологическая потребность для взрослых - 10 мкг/сут., для лиц старше 60 лет - 15 мкг/сут.

Физиологическая потребность для детей - 10 мкг/сут.

Витамин К. Метаболическая роль витамина К обусловлена его участием в модификации ряда белков свертывающей системы крови и костной ткани. Недостаток витамина К приводит к увеличению времени свертывания крови, пониженному содержанию протромбина в крови. Среднее потребление в разных странах 50 - 250 мкг/сут.

Установленный уровень потребности в разных странах - 55 - 120 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 120 мкг/сут. (вводится впервые).

Физиологическая потребность для детей - от 30 до 120 мкг/сут. (вводится впервые).

4.2.2.2. Минеральные вещества

4.2.2.2.1. Макроэлементы.

Кальций. Необходимый элемент минерального матрикса кости, выступает регулятором

нервной системы, участвует в мышечном сокращении. Дефицит кальция приводит к деминерализации позвоночника, костей таза и нижних конечностей, повышает риск развития остеопороза. Среднее потребление в разных странах 680 - 950 мг/сут., в Российской Федерации - 500 - 750 мг/сут. Установленный уровень потребности 500 - 1 200 мг/сут. Верхний допустимый уровень потребления 2 500 мг/сут.

Уточненная физиологическая потребность для взрослых - 1 000 мг/сут., для лиц старше 60 лет - 1 200 мг/сут.

Физиологическая потребность для детей - от 400 до 1 200 мг/сут.

Фосфор. В форме фосфатов принимает участие во многих физиологических процессах, включая энергетический обмен (в виде высокоэнергетического АТФ), регуляции кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, участвует в клеточной регуляции путем фосфорилирования ферментов, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту. Оптимальное для всасывания и усвоения кальция соотношение содержания кальция к фосфору в рационе составляет 1:1. Среднее потребление в разных странах 1 110 - 1 570 мг/сут., в Российской Федерации - 1 200 мг/сут. Установленные уровни потребности 550 - 1 400 мг/сут. Верхний допустимый уровень потребления не установлен.

Уточненная физиологическая потребность для взрослых - 800 мг/сут.

Физиологическая потребность для детей - от 300 до 1 200 мг/сут.

Магний. Является кофактором многих ферментов, в т.ч. энергетического метаболизма, участвует в синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца. Среднее потребление в разных странах 210 - 350 мг/сут., в Российской Федерации 300 мг/сут. Установленные уровни потребности 200 - 500 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 400 мг/сут.

Физиологическая потребность для детей - от 55 до 400 мг/сут.

Калий. Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления. Среднее потребление в разных странах 2 650 - 4 140 мг/сут., в Российской Федерации 3 100 мг/сут. Установленные уровни потребности 1 000 - 4 000 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 2 500 мг/сут. (вводится впервые).

Физиологическая потребность для детей - от 400 до 2 500 мг/сут. (вводится впервые).

Натрий. Основной внеклеточный ион, принимающий участие в переносе воды, глюкозы крови, генерации и передаче электрических нервных сигналов, мышечном сокращении. Клинические проявления гипонатриемии выражаются как общая слабость, апатия, головные боли, гипотония, мышечные подергивания. Среднее потребление 3 000 - 5 000 мг/сут. Установленный уровень потребности 1 300 - 1 600 мг/сут. Верхний допустимый уровень не установлен.

Физиологическая потребность для взрослых - 1 300 мг/сут. (вводится впервые).

Физиологическая потребность для детей - от 200 до 1 300 мг/сут. (вводится впервые).

Хлориды. Хлор необходим для образования и секреции соляной кислоты. Среднее потребление 5 000 - 7 000 мг/сут. Установленный уровень потребности 2 000 - 2 500 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 2 300 мг/сут. (вводится впервые).

Физиологическая потребность для детей - от 300 до 2 300 мг/сут. (вводится впервые).

4.2.2.2. Микроэлементы.

Железо. Входит в состав различных по своей функции белков, в т.ч. ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно-восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту. Среднее потребление в разных странах 10 - 22 мг/сут., в Российской Федерации - 17 мг/сут. Установленные уровни потребностей для мужчин 8 - 10 мг/сут. и для женщин 15 - 20 мг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 10 мг/сут. (для мужчин) и 18 мг/сут. (для женщин).

Физиологическая потребность для детей - от 4 до 18 мг/сут.

Цинк. Входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии. Среднее потребление 7,5 - 17,0 мг/сут. Установленные уровни потребности 9,5 - 15,0 мг/сут. Верхний допустимый уровень потребления 25 мг/сут.

Уточненная физиологическая потребность для взрослых - 12 мг/сут.

Физиологическая потребность для детей - от 3 до 12 мг/сут.

Йод. Участвует в функционировании щитовидной железы, обеспечивая образование гормонов (тироксина и трийодтиронина). Необходим для роста и дифференцировки клеток всех тканей организма человека, митохондриального дыхания, регуляции трансмембранного транспорта натрия и гормонов. Недостаточное поступление приводит к эндемическому зобу с гипотиреозом и замедлению обмена веществ, артериальной гипотензии, отставанию в росте и умственном развитии у детей. Потребление йода с пищей широко варьирует в различных геохимических регионах - 65 - 230 мкг/сут. Установленные уровни потребности 130 - 200 мкг/сут. Верхний допустимый уровень потребления 600 мкг/сут.

Физиологическая потребность для взрослых - 150 мкг/сут.

Физиологическая потребность для детей - от 60 до 150 мкг/сут.

Медь. Входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Клинические проявления недостаточного потребления проявляются нарушениями формирования сердечнососудистой системы и скелета, развитием дисплазии соединительной ткани. Среднее потребление 0,9 - 2,3 мг/сут. Установленные уровни потребности 0,9 - 3,0 мг/сут. Верхний допустимый уровень потребления 5 мг/сут.

Физиологическая потребность для взрослых - 1,0 мг/сут. (вводится впервые).

Физиологическая потребность для детей - от 0,5 до 1,0 мг/сут. (вводится впервые).

Марганец. Участвует в образовании костной и соединительной ткани, входит в состав ферментов, участвующих в метаболизм аминокислот, углеводов, катехоламинов, необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена. Среднее потребление 1 - 10 мг/сут. Установленные уровни потребности 2 - 5 мг/сут. Верхний допустимый уровень потребления 5 мг/сут.

Физиологическая потребность для взрослых - 2 мг/сут. (вводится впервые).

Селен. Эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении. Среднее потребление 28 - 110 мкг/сут. Установленные уровни потребности 30 - 75 мкг/сут. Верхний допустимый уровень потребления 300 мкг/сут.

Физиологическая потребность для взрослых - 55 мкг/сут. (для женщин); 70 мкг/сут. (для мужчин) (вводятся впервые).

Физиологическая потребность для детей - от 10 до 50 мкг/сут. (вводится впервые).

Хром. Участвует в регуляции уровня глюкозы крови, усиливая действие инсулина. Дефицит приводит к снижению толерантности к глюкозе. Среднее потребление 25 - 160 мкг/сут.

Установленные уровни потребности 30 - 100 мкг/сут. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 50 мкг/сут. (вводится впервые).

Физиологическая потребность для детей от 11 до 35 мкг/сут. (вводится впервые).

Молибден. Является кофактором многих ферментов, обеспечивающих метаболизм серосодержащих аминокислот, пуринов и пиримидинов. Среднее потребление 44 - 500 мкг/сут. Установленные уровни потребности 45 - 100 мкг/сут. Верхний допустимый уровень потребления 600 мкг/сут.

Физиологическая потребность для взрослых - 70 мкг/сут. (вводится впервые).

Фтор. Инициирует минерализацию костей. Недостаточное потребление приводит к кариесу, преждевременному стиранию эмали зубов. Среднее потребление 0,5 - 6,0 мг/сут. Установленные уровни потребности 1,5 - 4,0 мг/сут. Верхний допустимый уровень потребления 10 мг/сут.

Рекомендуемая физиологическая потребность для взрослых - 4 мг/сут. (вводится впервые).

Физиологическая потребность для детей - от 1,0 до 4,0 мг/сут. (вводится впервые).

4.3. Минорные и биологически активные вещества пищи с установленным физиологическим действием

4.3.1. Витаминоподобные соединения

4.3.1.1. Инозит

Участвует в обмене веществ, вместе с холином участвует в синтезе лецитина, оказывает липотропное действие.

Рекомендуемые уровни потребления: для взрослых - 500 мг/сут.; для детей 4 - 6 лет - 80 - 100 мг/сут.; для детей 7 - 18 лет - от 200 до 500 мг/сут. (вводятся впервые).

4.3.1.2. L-Карнитин

Играет важную роль в энергетическом обмене, осуществляя перенос длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий для последующего их окисления и тем самым снижает накопление жира в тканях. Дефицит карнитина способствует нарушению липидного обмена, в т.ч. развитию ожирения, а также развитию дистрофических процессов в миокарде.

Рекомендуемые уровни потребления: для взрослых - 300 мг/сут.; для детей 4 - 6 лет - 60 - 90 мг/сут.; для детей 7 - 18 лет - от 100 до 300 мг/сут. (вводятся впервые).

4.3.1.3. Коэнзим Q10 (убихинон)

Соединение, участвующее в энергетическом обмене и сократительной деятельности сердечной мышцы.

Рекомендуемый уровень потребления для взрослых - 30 мг/сут. (вводится впервые).

4.3.1.4. Липоевая кислота

Оказывает липотропный эффект, детоксицирующее действие, участвует в обмене аминокислот и жирных кислот.

Рекомендуемый уровень потребления для взрослых - 30 мг/сут. (вводится впервые).

4.3.1.5. Метилметионинсульфоний (витамин U)

Участвует в метилировании гистамина, что способствует нормализации кислотности желудочного сока и проявлению антиаллергического действия.

Рекомендуемый уровень потребления для взрослых - 200 мг/сут. (вводится впервые).

4.3.1.6. Оротовая кислота (витамин B_{13})

Участвует в синтезе нуклеиновых кислот, фосфолипидов и билирубина.

Рекомендуемый уровень потребления для взрослых - 300 мг/сут. (вводится впервые).

4.3.1.7. Парааминобензойная кислота

Участвует в метаболизме белков и кроветворении.

Рекомендуемый уровень потребления для взрослых - 100 мг/сут. (вводится впервые).

4.3.1.8. Холин

Входит в состав лецитина, играет роль в синтезе и обмене фосфолипидов в печени, является источником свободных метильных групп, действует как липотропный фактор. В обычном рационе содержится 500 - 900 мг. Верхний допустимый уровень потребления - 1 000 - 2 000 мг/сут. для детей до 14 лет, 3 000 - 3 500 мг/сут. для детей старше 14 лет и взрослых.

Рекомендуемые уровни потребления: для взрослых - 500 мг/сут.; для детей 4 - 6 лет - от 100 до 200 мг/сут.; 7 - 18 лет от 200 до 500 мг/сут. (вводятся впервые).

4.3.2. Микроэлементы

4.3.2.1. Кобальт

Входит в состав витамина B_{12} . Активирует ферменты обмена жирных кислот и метаболизма фолиевой кислоты. Среднее потребление в Российской Федерации 10 мкг/сут. Верхний допустимый уровень потребления не установлен.

Рекомендуемый уровень потребления для взрослых - 10 мкг/сут. (вводится впервые).

4.3.2.2. Кремний

Кремний входит в качестве структурного компонента в состав гликозоаминогликанов и стимулирует синтез коллагена. Среднее потребление 20 - 50 мг/сут. Верхний допустимый уровень потребления не установлен.

Рекомендуемый уровень потребления для взрослых - 30 мг/сут. (вводится впервые).

4.3.3. Индольные соединения

4.3.3.1. Индол-3-карбинол

Индолы относятся к продуктам гидролиза глюкозинолатов растений семейства крестоцветных. Биологическая активность пищевых индолов (индол-3-карбинол, аскорбиген, индол-3-ацетонитрил) связана с их способностью индуцировать активность монооксигеназной системы и некоторых ферментов ІІ фазы метаболизма ксенобиотиков (глутатионтрансферазы). Имеются данные эпидемиологических наблюдений о существовании определенной связи между высоким уровнем потребления индол-3-карбинола и снижением частоты риска развития некоторых видов гормонозависимых опухолей.

Рекомендуемый уровень потребления для взрослых 50 мкг/сут. (вводится впервые).

4.3.4. Флавоноиды

Широко представлены в пищевых продуктах растительного происхождения. Регулярное потребление этих соединений приводит к достоверному снижению риска развития сердечно-сосудистых заболеваний. Высокая биологическая активность флавоноидов обусловлена наличием антиоксидантных свойств. Установлена также важная роль флавоноидов в регуляции активности ферментов метаболизма ксенобиотиков.

Рекомендуемые уровни потребления: для взрослых - 250 мг/сут. (в т.ч. катехинов - 100 мг/сут.); для детей 7 - 18 лет от 150 до 250 мг/сут. (в т.ч. катехинов от 50 до 100 мг/сут.) (вводятся впервые).

4.3.5. Изофлавоны, изофлавонгликозиды

Содержатся в бобовых. Не являясь стероидными соединениями, они способствуют

нормализации холестеринового обмена, оказывают антиоксидантное действие, способствуют нормализации обмена кальция, гормонального баланса.

Рекомендуемый уровень потребления для взрослых 50 мг/сут. (вводится впервые).

4.3.6. Растительные стерины (фитостерины)

Растительные стерины (фитостерины) содержатся в различных видах растительной пищи человека и в морепродуктах. Они являются обязательным компонентом растительных масел. Существенно снижают уровень свободного холестерина в липопротеидах низкой плотности, способны вытеснять холестерин из мембранных структур. Потребление фитостеринов 150 - 450 мг/сут.

Рекомендуемый уровень потребления растительных стеринов (фитостеринов) для взрослых 300 мг/сут. (вводится впервые).

4.3.7. Глюкозамин сульфат

Глюкозамин сульфат - полисахарид хрящевой ткани животных и рыб, входит в состав гликопротеинов. Естественный компонент пищи человека. Участвует в формировании ногтей, связок, кожи, костей, сухожилий, суставных поверхностей, клапанов сердца и др. Положительное действие глюкозамин сульфата на организм человека и функциональную активность опорнодвигательного аппарата доказано в клинических исследованиях.

Рекомендуемый уровень потребления для взрослых 700 мг/сут. (вводится впервые).

5. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения

Таблица 5.1

Нормы физиологических потребностей в энергии и пищевых веществах для мужчин

	Показатели (в сут.)													Мужч			
		I (1,4) II (1,6) III (1,9) IV (2,2)							\	/ (2,5)		ины стар					
		Возрастные группы											ше 60 лет				
		18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
							Э	нергия	и макро	онутрие	нты						
1	Энергия <*>, ккал	2 450	2 300	2 100	2 800	2 650	2 500	3 300	3 150	2 950	3 850	3 600	3 400	< 4 200	3 950	3 750	2 300
2	Белок, г	72	68	65	80	77	72	94	89	84	108	102	96	117	111	104	68
	в т.ч. животный, г	36	34	32,5	40	38,5	36	47	44,5	42	54	51	48	58,5	55,5	52	34
	% от ккал	12	12	12	12	12	12	11	11	11	11	11	11	11	11	11	12
3	Жиры, г	81	77	70	93	88	83	110	105	98	128	120	113	154	144	137	77
	Жир, % от ккал	30	30	30	30	30	30	30	30	30	30	30	30	33	33	33	30
	МНЖК, % от ккал								10								
	ПНЖК, % от ккал								6 - 10)							
	Омега-6, % от ккал								5 - 8								
	Омега-3, % от ккал		1-2														
	Фосфолипиды, г		5 - 7														
4	Углеводы, г	358	335	303	411	387	366	484	462	432	566	528	499	586	550	524	335

Сахар, % от ккал	< 10
Пищевые волокна, г	20
	Витамины
Витамин С, мг	90
Витамин В1, мг	1,5
Витамин В2, мг	1,8
Витамин В ₆ , мг	2,0

Продолжение табл. 5.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Ниацин, мг								20								
	Витамин В ₁₂ , мкг								3,0								
	Фолаты, мкг								400								
	Пантотеновая кислота, мг								5,0								
	Биотин, мкг								50								
	Витамин А, мкг рет. экв.								900								
	Бета- каротин, мг								5,0								
	Витамин E, мг ток. экв.								15								
	Витамин D, мкг								10								15
	Витамин К, мкг								120								
								Минер	альные	вещест	ва						
	Кальций, мг								1 000								1 200
	Фосфор, мг								800								
	Магний, мг								400								
	Калий, мг								2 500								

Натрий, мг	1 300
Хлориды, мг	2 300
Железо, мг	10
Цинк, мг	12
Йод, мкг	150
Медь, мг	1,0
Марганец, мг	2,0
Селен, мкг	70
Хром, мкг	50
Молибден, мкг	70
Фтор, мг	4,0

Таблица 5.2

Нормы физиологических потребностей в энергии и пищевых веществах для женщин

Показатели (в сут.)	Группа	физической активности (коз	эффициент физической акті	ивности)	Женщи
	l (1,4)	II (1,6)	III (1,9)	IV (2,2)	НЫ

<*> Для лиц, работающих в условиях Крайнего Севера, энерготраты увеличиваются на 15%, и пропорционально возрастают потребности в белках, жирах и углеводах.

			· · · · · · · · · · · · · · · · · · ·											старше
		18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	18 - 29	30 - 39	40 - 59	60 лет
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
						Энеј	огия и ма	кронутри	енты					
	Энергия <*>, ккал	2 000	1 900	1 800	2 200	2 150	2 100	2 600	2 550	2 500	3 050	2 950	2 850	1 975
2	Белок, г	61	59	58	66	65	63	76	74	72	87	84	82	61
	в т.ч. животный, г	30,5	29,5	29	33	32,5	31,5	38	37	36	43,5	42	41	30,5
	% от ккал	12	12	12	12	12	12	12	12	12	12	12	12	12
3	Жиры, г	67	63	60	73	72	70	87	85	83	102	98	95	66
	Жир, % от ккал	30	30	30	30	30	30	30	30	30	30	30	30	30
	МНЖК, % от ккал						1	10						
	ПНЖК, % от ккал						6 -	10						
	Омега-6, % от ккал						5	- 8						
	Омега-3, % от ккал						1	- 2						
	Фосфолипиды, г		5 - 7											
4	Углеводы, г	289	274	257	318	311	305	378	372	366	462	432	417	284
	Сахар, % от ккал						<	10						
	Пищевые волокна, г		20											

	Витамины
Витамин С, мг	90
Витамин В1, мг	1,5
Витамин В2, мг	1,8
Витамин В ₆ , мг	2,0
Ниацин, мг	20
Витамин В ₁₂ , мкг	3,0

Продолжение табл. 5.2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Фолаты, мкг						4	00						
	Пантотеновая кислота, мг						5	,0						
	Биотин, мкг						5	0						
	Витамин А, мкг рет. экв.						9	00						
	Бета-каротин, мг						5	,0						
	Витамин E, мг ток. экв.						1	5						
	Витамин D, мкг						1	.0						15
	Витамин К, мкг						1	20						

	Минеральные вещества	
Кальций, мг	1 000	1 200
Фосфор, мг	800	
Магний, мг	400	
Калий, мг	2 500	
Натрий, мг	1 300	
Хлориды, мг	2 300	
Железо, мг	18	
Цинк, мг	12	
Йод, мкг	150	
Медь, мг	1,0	
Марганец, мг	2,0	
Селен, мкг	55	
Хром, мкг	50	
Молибден, мкг	70	
Фтор, мг	4,0	

<*> Для лиц, работающих в условиях Крайнего Севера, энерготраты увеличиваются на 15%, пропорционально возрастают потребности в белках, жирах и углеводах.

Таблица 5.3 Дополнительные потребности в энергии и пищевых веществах для женщин в период беременности и кормления ребенка

Показатели (в сут.)	Беременные (2-я половина)	Кормящие (1 - 6 мес.)	Кормящие (7 - 12 мес.)
Эне	ргия и макронутриент	Ы	,
Энергия, ккал	350	500	450
Белок, г	30	40	30
в т.ч. животный, г	20	26	20
Жиры, г	12	15	15
Углеводы, г	30	40	30
	Витамины		
Витамин С, мг	10	30	30
Витамин В1, мг	0,2	0,3	0,3
Витамин В2, мг	0,2	0,3	0,3
Витамин В ₆ , мг	0,3	0,5	0,5
Ниацин, мг	2	3	3
Витамин В ₁₂ , мкг	0,5	0,5	0,5
Фолат, мкг	200	100	100
Витамин А, мкг рет. экв.	100	400	400
Пантотеновая кислота, мг	1,0	2,0	2,0
Витамин Е, мг ток. экв.	2	4	4
Витамин D, мкг	2,5	2,5	2,5
М	инеральные вещества		
Кальций, мг	300	400	400
Фосфор, мг	200	200	200
Магний, мг	50	50	50

Железо, мг	15	0	0
Цинк, мг	3	3	3
Йод, мкг	70	140	140
Медь, мг	0,1	0,4	0,4
Марганец, мг	0,2	0,8	0,8
Селен, мкг	10	10	10

Таблица 5.4

Нормы физиологических потребностей в энергии и пищевых веществах для детей и подростков Российской Федерации

	Показатели (в					Воз	растные гру	′ппы					
	сут.)	0 - 3 мес.	4 - 6 мес.	7 - 12	от 1 года	от 2 до 3	от 3 до 7	от 7 до	от 11 до	о 14 лет	от 14 д	о 18 лет	
				мес.	до 2 лет	лет	лет	11 лет	мальчики	девочки	юноши	девушки	
1	2	3	4	5	6	7	8	9	10	11	12	13	
						Энергия	и пищевые	вещества					
1	Энергия, ккал	115 <*>	115 <*>	100 <*>	1 200	1 400	1 800	2 100	2 500	2 300	2 900	2 500	
2	Белок, г	-	-	-	36	42	54	63	75	69	87	75	
	<*>в т.ч. животный (%)	-	-	-	70		65			60			
	<**> г/кг массы тела	2,2	2,6	2,9	-	-	-	-	-	-	-	-	
	% по ккал	-	-	-				:	12				
3	Жиры, г	6,5 <*>	6 <*>	5,5 <*>	40	47	60	70	83	77	97	83	
	Жир, % по ккал	-	-	-				:	30				
	ПНЖК, % по ккал	-	-	-			5 -	10			6 -	10	
	Омега-6, % по ккал	-	-	-		4 - 9					5	- 8	
	Омега-3, % по ккал	-	-	-		0,8 - 1					1	- 2	
	Холестерин, мг							< :	300				

4	Углеводы, г	13 <*>	13 <*>	13 <*>	174	203	261	305	363	334	421	363	
	Углеводы, % по ккал	-	-	-	58								
	в т.ч. сахар, % по ккал	-	-	-	< 10								
	Пищевые волокна, г	-	-	-	8		10	15	20				
	Витамины												
	Витамин С, мг	30	35	40	4	.5	50	60	70	60	90	70	
	Витамин В1, мг	0,3	0,4	0,5	0,8		0,9	1,1	1,3		1,50	1,3	
	Витамин В2, мг	0,4	0,5	0,6	0,9		1,0	1,2	1,5		1,8	1,5	
	Витамин В ₆ , мг	0,4	0,5	0,6	0,	,9	1,2	1,5	1,7	1,6	2,0	1,6	

Продолжение табл. 5.4

1	2	3	4	5	6	7	8	9	10	11	12	13
	Ниацин, мг	5,0	6,0	7,0	8,0		11,0	15,0	18,0		20,0	18,00
	Витамин В ₁₂ ,	0,3	0,4	0,5	0,7		1,5	2,0	3,0			
	Фолаты, мкг	5	0	60	100		200		300 - 400		400	
	Пантотеновая кислота, мг	1,0	1,5	2,0	2,	,5	3	,0	3	,5	5,0	4,0

Биотин, мкг		10		10	15	20	2	25	5	0
Витамин А, мкг рет. экв.		400		450	500	700	1 000	800	1 000	800
Витамин E, мг ток. экв.	3	,0		4,0	7,0	10,0	12,0	12,0	15,0	15,0
Витамин D, мкг					10,0					
Витамин К, мкг	30		30	55	60	80	70	120	100	
				Минеральные	вещества					
Кальций, мг	400 500 600		800	900	1 100		1 200			
Фосфор, мг	300	400	500	500 700		1 100	1 200			
Магний, мг	55	60	70	80	200	250	300	300	400	400
Калий, мг	-	-	-	400	600	900	1 500		2 500	
Натрий, мг	200	280	350	500	700	1 000	1 100		1 300	
Хлориды, мг	300	450	550	800	1 100	1 700	19	900	2 3	800
Железо, мг	4,0	7,0		10,0		12	2,0	15	5,0	18,0
Цинк, мг	3,	,0	4,0	5,0	8,0	10,0		12	2,0	
Йод, мг		0,06		0,07	0,10	0,12	0,13		0,15	
Медь, мг	0,	,5	0,3	0,5	0,6	0,7	0	1,0		,0
Селен, мг	0,01	0,0)12	0,015	0,02	0,03	0,	04	0,05	
Хром, мкг	-	-	-	11	1	5	2	25	3	5

Фтор, мг	1,0	1,0	1,2	1,4	2,0	3,0	4,0	4,0

- <*> Потребности для детей первого года жизни в энергии, жирах, углеводах даны в г/кг массы тела.
- <**> Потребности для детей первого года жизни, находящихся на искусственном вскармливании.

6. Рекомендуемые уровни потребления минорных и биологически активных веществ пищи с установленным физиологическим действием для взрослых и детей

Таблица 6.1

Рекомендуемые уровни потребления минорных и биологически активных веществ пищи с установленным физиологическим действием для взрослых

Показатель	Мужчины и женщины старше 18 лет, потребление/сут.
Витаминоподобны	е соединения
Инозит, мг	500
L-Карнитин, мг	300
Коэнзим Q10 (убихинон), мг	30
Липоевая кислота, мг	30
Метилметионин-сульфоний, мг	200
Оротовая кислота, мг	300
Парааминобензойная кислота, мг	100
Холин, мг	500
Микроэлем	ленты
Кобальт, мкг	10
Кремний, мг	30
Другие биологически а	ктивные вещества
Индольные соединения: Индол-3-карболы, мг	50
Флавоноиды, мг	250 (в том числе катехинов - 100)
Изофлавоны, изофлавонгликозиды, мг	50
Растительные стерины (фитостерины), мг	300
Глюкозамин сульфат, мг	700

Рекомендуемые уровни потребления биологически активных веществ пищи с установленным физиологическим действием для детей

Показатель	Величины потребления в зависимости от возраста детей, мг/сут.									
	0 - 12 месяцев	1 - 3 года	4 - 6 лет	7 - 18 лет						
Витаминоподобные соединения										
Инозит	30 - 40	50 - 60	80 - 100	200 - 500						
L-Карнитин	10 - 15	30 - 50	60 - 90	100 - 300						
Холин	50 - 70	70 - 90	100 - 200	200 - 500						
Флавоноиды (за счет фруктов и овощей)	-	-	-	150 - 250						
в т.ч. катехинов	-	-	-	50 - 100						

Приложение

МОНИТОРИНГ ПИТАНИЯ.

ИСПОЛЬЗОВАНИЕ "НОРМ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ РАЗЛИЧНЫХ ГРУПП НАСЕЛЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ" ДЛЯ ОЦЕНКИ ВЕРОЯТНОСТНОГО РИСКА НЕДОСТАТОЧНОГО ПОТРЕБЛЕНИЯ ПИЩЕВЫХ ВЕЩЕСТВ

При использовании норм для оценки расчетов потребления пищевых веществ следует иметь в виду следующее:

- величины пищевых веществ, представленные в нормах носят групповой характер, т.е. индивидуальная потребность (ИП) каждого человека будет ниже величины физиологической потребности;
- показатели ИП в популяции для пищевых веществ имеют нормальное распределение, т.е. потребности 95% популяции находятся в пределах двух стандартных отклонений от средней величины потребности (СП) (рис. 1);
- СП означает, что одна половина популяции (50%) имеет ИП ниже СП, а другая выше СП. Фактическое потребление на уровне СП будет свидетельствовать 50%-м вероятностном риске недостаточного потребления (рис. 1);

Рис. 1. Распределение ИП в пищевых веществах у населения (не приводится)

- около 2,5% популяции будут иметь ИП на два стандартных отклонения (около 30%) ниже СП. Фактическое потребление на этом уровне будет достаточным только для 2,5% популяции, а для подавляющей части популяции (почти 98%) такой уровень потребления будет явно недостаточным. Потребление на этом уровне будет свидетельствовать о 98%-м вероятностном риске недостаточного потребления (табл. 1).

В табл. 1 приведены критерии для оценки вероятностного риска недостаточного потребления некоторых пищевых веществ.

Таблица 1 Критерии для расчета вероятностного риска недостаточного потребления пищевых веществ

Пищевые вещества		Величи	ны вероя	тностного р	оиска	
	Нет риска	Низкий		Средний		Высокий
		2%	16%	50%	84%	98%
Белок, г/кг массы тела, в сут.	0,75 - 1,0 и выше					
Мужчины и женщины старше 18 лет	(но не более 1,6)	0,75	0,675	0,60	0,525	0,45
Витамин В ₁ , мг/сут.						
Мужчины старше 18 лет	1,2 - 1,5	1,2	1,1	1,0	0,9	0,8
Женщины старше 18 лет	1,1 - 1,5	1,1	1,0	0,9	0,8	0,7
Витамин В₂, мг/сут.						
Мужчины старше 18 лет	1,3 - 1,8	1,3	1,2	1,1	1,0	0,9
Женщины старше 18 лет	1,1 - 1,8	1,1	1,0	0,9	0,8	0,7
Витамин С, мг/сут.	40 - 90	40,0	32,5	25,0	17,5	10,0
Мужчины и женщины старше 18 лет						
Витамин А, мкг рет. экв./день						
Мужчины старше 18 лет	-	900,0	762,5	625,0	487,5	350,0
Женщины старше 18 лет		700,0	600,0	500,0	400,0	300,0
Кальций, мг/сут.	700 - 1000					
Мужчины и женщины старше 18 лет		700,0	612,5	525,0	462,5	450,0
Железо, мг/сут.						

Мужчины старше 18 лет	8,7 - 10	8,7	7,7	6,7	5,7	4,7	
Женщины 18 - 49 лет,	14,8 - 18	14,8	13,1	11,4	9,7	8,0	
старше 50 лет	-	8,7	7,7	6,7	5,7	4,7	